Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah Ali, ${ }^{\text {a }}$ Nur Ashikin Khamis ${ }^{\text {a }}$ and Bohari. M. Yamin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Universiti Malaya,
Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: hapipahali@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.134$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis\{2'-[1-(2-hydroxy-5-chlorophenyl)ethylidene]-benzohydrazido- $\left.\kappa^{2} O, N^{2}\right\}$ bis(pyridine- κN)zinc(II)

The title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, is a centrosymmetric monomer with octahedral geometry about the Zn atom. The molecule is stabilized by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, so forming a threedimensional network.

Comment

Recrystallization of $\left[\mathrm{Zn}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]$ from pyridine gave the dimeric compound $\left[\mathrm{Zn}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, with trigonal bipyrimidal geometry at the central Zn atoms (Ali, Mohamad et al., 2004). However, the title compound, $\left.\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)_{2}\right]\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, (I), which was also obtained by recrystallization of $\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)_{2}\right]$ from pyridine, is monomeric with an octahedral geometry about the central Zn atom. The complex is also an analogue of the centrosymmetric compound $\left.\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$ (Ali, Khamis et al., 2004).

The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The ligands are chelated in a bidentate manner via atoms O1 and N 1 , occupying the equatorial positions, the $\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$ bond angle being 103.47 (8) ${ }^{\circ}$. The N atoms of the two pyridine molecules occupy the axial positions, the $\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$ bond angle being 180° [symmetry code: (i) $1-x,-y, 1-z$]. The structural dimensions of the ligand are in the normal range (Orpen et al., 1979; Allen et al., 1987) and in agreement with other octahedral zinc complexes (Tesouro Vallina \& StoeckliEvans, 2002; Ali et al., 2004). The chelated $\mathrm{Zn} 1 / \mathrm{O} 1 / \mathrm{C} 7 / \mathrm{N} 2 / \mathrm{N} 1^{\mathrm{i}}$ fragment is planar, with a maximum deviation from the mean plane of 0.064 (3) \AA for atom $\mathrm{N} 1{ }^{\mathrm{i}}$. The $\mathrm{C} 8 / \mathrm{C} 10-\mathrm{C} 15 / \mathrm{O} 2 / \mathrm{Cl} 1$ fragment is planar [maximum deviation at C 12 of 0.05 (3) \AA] and inclined to the $\mathrm{C} 1-\mathrm{C} 7$ fragment [maximum deviation -0.011 (4) \AA for atom C5] by 43.53 (15) ${ }^{\circ}$.

Received 3 August 2004 Accepted 18 August 2004 Online 28 August 2004

Figure 1
Molecular structure of (I), with 50\% probability displacement ellipsoids. H atoms are represented by small spheres.

Figure 2
Packing diagram of the title complex, viewed down b axis. The dashed lines denote $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

There are important intramolecular hydrogen-bonding interactions in the molecule, and details are given in Table 2. These are interactions of the types $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$, involving hydroxyl atom O 2 and atom N 2 , and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, involving methyl group C 9 and carbonyl atom $\mathrm{O} 1\left(\mathrm{O} 2-\mathrm{H} 2 D \cdots \mathrm{~N} 2^{\mathrm{i}}\right.$ and $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1)$. In the crystal, the molecules are linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions $\left(\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{ii}}\right.$ and $\left.\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{C} \mathrm{C}^{\text {iii }}\right)$, forming a threedimensional network, as illustrated in Fig. 2.

Experimental

The complex was synthesized by the template condensation of 2-hydroxy-5-chloroacetophenonebenzhydrazide $(0.3 \mathrm{~g}, \quad 1.0 \mathrm{mmol})$ with zinc acetate dihydrate $(0.11 \mathrm{~g}, 0.5 \mathrm{mmol})$, by refluxing and stirring in ethanol for 5 h . The light-yellow solid obtained was filtered off and recrystallized from pyridine.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=799.00$
Monoclinic, $P 2_{1} / c$
$a=10.2453(17) \AA$
$b=15.388(3) \AA$
$c=12.359(2) \AA$
$\beta=100.189(3))^{\circ}$
$V=1917.8(5) \AA^{3}$
$Z=2$

$$
D_{x}=1.384 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2652 reflections
$\theta=2.0-26.5^{\circ}$
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Plate, light yellow
$0.48 \times 0.46 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.692, T_{\text {max }}=0.929$
8429 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.134$
$S=1.08$
3939 reflections
245 parameters
H atoms treated by a mixture of independent and constrained refinement

3939 independent reflections 3205 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-9 \rightarrow 12$
$k=-13 \rightarrow 19$
$l=-15 \rightarrow 14$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0641 P)^{2}\right.} \\
&+0.6133 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.022(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.291(4)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.206(2)$	$\mathrm{N} 1-\mathrm{N} 2^{\mathrm{i}}$	$1.393(3)$
$\mathrm{Zn} 1-\mathrm{N} 3$	$2.243(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.321(4)$
$\mathrm{Cl} 1-\mathrm{C} 12$	$1.737(4)$	$\mathrm{N} 3-\mathrm{C} 16$	$1.324(5)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.263(3)$	$\mathrm{N} 3-\mathrm{C} 20$	$1.331(5)$
$\mathrm{O} 2-\mathrm{C} 15$	$1.348(5)$		
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1$	180	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$88.67(10)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$76.53(8)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$87.98(10)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$103.47(8)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 3$	$92.02(10)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 3$	$91.33(10)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$	180

Symmetry code: (i) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9A . ${ }^{\text {O }}$ 1	0.96	2.24	3.177 (4)	165
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{N} 2^{\text {i }}$	0.87 (5)	1.69 (4)	2.522 (4)	160 (4)
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.47	3.272 (6)	144
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{Cl} 1^{\text {iii }}$	0.96	2.82	3.629 (5)	143

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.
All the H atoms could be located from Fourier difference maps. The hydroxyl H atom at O 2 was refined isotropically. The remainder were included in calculated positions and treated as riding atoms [$\mathrm{C}-$ $\mathrm{H}_{\text {ar }}=0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{C}-\mathrm{H}_{3}=0.96 \AA$, with $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for
publication: SHELXTL, PARST (Nardelli, 1995) and PLATON
(Spek, 2003).
The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for the research grants IRPA Nos. 09-02-03-0125 and 09-02-02-993, respectively.

References

Ali, H. M., Khamis, N. A., Basirun, W. J. \& Yamin, B. M. (2004). Acta Cryst. E60, m873-m875.

Ali, H. M., Mohamad, M., Yusof, M. M. S. \& Yamin, B. M. (2004). Acta Cryst. E60, m123-m125.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S3.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (2002). Polyhedron, 21, 1177-1187.

